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ABSTRACT

In this paper we applied Cloude's decomposition to imaging radar polmimetry. We

show in detail how the decomposition results can guide the interpretation of scattering
from vegetated areas. For multifrequency polarlmetric radar measurements of a clear-

cut area, the decomposition leads us to conclude that the vegetation is probably thin
compared to even the C-band radar wavelength of 6 cm. For a forested area, we notice

an increased amount of even number of reflection scattering at P-band and L-band,

probably the result of penetration through the coniferous canopy resulting in trunk-
ground double reflection scattering. The scattering for the forested area is still

dominated by scattering from randomly oriented cylinders, however. It is found that

these cylinders are thicker than in the case of clear-cut areas, leading us to conclude
that scattering from the branches probably dominates in this case.

1. INTRODUCTION

In the analysis of polarimetric imaging radar data, one is often faced with the situation

where some geophysical parameters must be inferred from an area that exhibits

significant natural variability in the scattering properties. In such cases, the resulting

average Stokes or covariance matrix differs significantly from that of a single scatterer.
It has long been speculated that if a unique way could be found to decompose such an

average Stokes or covariance matrix into a sum of matrices representing single
scatterers, one would not only be able to more accurately interpret the scattering
processes, but the problem of inferring geophysical parameters from the measured

radar data would also be significantly simplified.

One of the first examples of such a target decomposition technique was provided by

Chandrasekhar [1] in his book on radiative transfer. Considering the case of lateral

scattering of light by small anisotropic particles, he decomposed the total average phase

matrix into the sum of a phase matrix that represents dipole scattering and a phase
matrix that represents pure random scattering, or noise. As such, his target

decomposition followed the same principle that breaks the Stokes vector of a partially
polarized wave into the sum of a Stokes vector representing a fully polarized wave, and

a Stokes vector representing a completely unpolarlzed wave (see Papas [2] for example).
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Huynen [3], in his thesis published in 1970, also introduced a target decomposiUon
theorem in which he decomposed an average Mueller matrix into the sum of a Mueller

matrix for single a scatterer and a "noise" or N-target Mueller matrix. However, unlike
Chandmsekhar's decomposition, Huynen's N-target is not polarization independent,

and has been shown to be just one of an infinite set of such residue matrices, meaning

that Huynen's decomposition is not unique.

In 1988 Cloude [4] introduced a target decomposition based on an eigenvector

decomposiUon of the target covariance matrix. This decomposition was shown to be

unique and, in the monostatic case, breaks the average covariance matrix up into the

weighted sum of three covariance matrices representing three different single scatterers,
analogous to the decomposition of a Stokes vector of a partially polarized wave into the
sum of the Stokes vectors of two full polarized waves that are orthogonally polarized [2].

In thls paper we examine the application of Cloude's decomposition to the analysis of

polarimetric synthetic aperture radar (SAR) data.

2. CLOUDE'S DECOMPOSITION

Cloude showed that a general covarlance matrix IT] can be decomposed as follows:

4

[TI = _._ k_.k_ (1)
t=1

In (1), 2,l ;t = 1,2,3,4 are the eigenvalues of the covariance matrix, kl ; t= 1,2,3,4 are

the eigenvectors of [T], and k_ means the adjo/nt (complex conjugate transposed] of

k s. In the monostatic case, for reciprocal media, the covariance matrix has one zero

eigenvalue and the decomposition results in at most three covariance matrices on the

right-hand side of (1).

In (I) the elements of the eigenvectors are the elements of an equivalent scattering
matrix in the basis in which the decomposition is performed. For example, if the
covariance matrix elements are expressed in the no_ HV basis, then the four

elements of the eigenvectors are simply the four scattering matrix elements in the linear
basis. Also, since the covariance matrix is, by deiknition, a........hermitian matrix, it follows _

that the elgenvalues are all real, and _e eigenvect0rs _ 0_ogo_. _erefore, one

can interpret (1) to mean that this decomposition breaks the covarlance matrix into the

weighted sum of covariance matrices from "orthogonal" scattering matrices.

Cloude did his decomposition in the basis formed by the Pauli spin matrices, but

pointed out that the decomposition can be done using any four complex matrices that

satisfy the constraint of completeness and normalization. Here, we shall interpret our
results in the natural linear basis in which the radar measurements are performed.
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Also useful in our discussions later is Cloude's definition of target entropy,

4

H T= __P_log4p_
t=l

where

Pi = 21

21 + 22 + 23 + 24

(2}

As pointed out by Cloude, the target entropy is a measure of target disorder, with

H T = 1 for random targets and H T = 0 for simple (single) targets.

(3)

3. DECOMPOSITION OF SCATTERING FROM AZIMIJTHALLY SYMMETRIC NATURAL
TERRAIN

Before getting into the radar data analysis, let us illustrate the decomposition using a
genera] description of the covariance matrix for azlmuthally symmetrical natural terrain

in the monostatic case. Borgeaud et aL [5] showed using a random medium model,
that the average covariance matrix for azlmuthally symmetrical terrain in the

monostatic case has .the general form

[T] = C 7/

0
(4)

where

(6)

(ShaSta)
71 = 2 (SI_S_._) (7)

(8)

The superscript * means complex conjugate, and all quantities are ensemble averages.
The parameters C, 17, _ and p all depend on the size, shape and electrical properties of
the scatterers, as well as their statistical angular distribution. It is easily shown that
the eigenvalues of IT] are
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(9)

(I0)

_'3 = C 17 (11)

The corresponding three elgenvectors are

kl
2p/[E-1 + _/_1]

0

1

(12)

k2
2P / [:- 1-'_] 1

0

1

(13)

k3
(14)

In these expressions, we used the shorthand notation

A = [_-112+4_oI 2 (15)

We note that A is always positive.

elements of the first two eigenvectors as

k_.j.L = I [_ - 1 + "_/_12 ([E - 1- "_]_]2 + 4_(_2).
k21 -[_" I-_/A]2([_-I+'v/_]2+4_ 2)

Also note that we can write the ratio of the first

(16)

which is always negative. This means that the first two elgenvectors represent

scattering matrices that can be interpreted m te_r!__ of odd and even numbers of

reflections. In the rest of this paper, we shall examine decompositions of the form

shown above for different types of terrain using measured polarimetric radar data.
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4. EXAMPLES OF CLOUDE DECOMPOSITION}

4.1 Randombj or/ented d/electr/c cy//nders.

Before analyzing measured data, let us examine a special theoretical case of uniformly

randomly oriented dielectric cylinders. In general, the scattering matrix of a single
dielectric cylinder oriented horizontally can be written as

,s,:iooI ,17,
where a and b are complex numbers whose magnitudes and phases are functions of

cylinder dielectric constant, diameter and length [6]. Generally, when the cylinder is

thin compared to the wavelength, _[ > [/_. To calculate the average covariance matrix

for'randomly oriented cylinders, one has to apply a rotation operator to [$] and average

the results over all angles of orientation. Assuming a uniform distribution in angles
about the line of sight, one can easily show that the resulting average covariance matrix
for the monostatic case is of the form given in {4) with

_7 : 2_-b[ 2

[_a[2+_b12+29_(a*b)]
(20)

= 1 (21)

It is easily shown using (9) -- (14) that

;t! : 0(1+_I) (22)

A2 = C(1-lPl) (23)

_t3 = C 7/ (24)

The corresponding three elgenvectors are

1 (P/o_OII

kl = _ 1 J (25)
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k2 (26)

k3 {27)

From (19) and (20}. itis easily shown that

1-1pl =

This means that for the case of randomly oriented cylinders, the second and third

eigenvalues are the same.

In the thin cylinder llmlt, It_ approaches zero, and we find that

PthLn = 1/3

_/th_n = 213

(28}

(29)

(30)

[T] {I l:r -ill oi101 1 0 0 0 0
2_Ol

2000+ 0 0 +3C

3 I0 IJ _-I 0 0 0

(31)

In this case, equal amounts of scattering are contributed by the matrix that resembles

scattering by a sphere (or a trihedral corner reflector) and by the cross-polarized return,

although a significant fraction of the total energy is also contained in the third matrix

resembling scattering by a dihedral corner reflector. The entropy in this case is 0.95

indicating a high degree of target disorder or randomness.

On the other hand, in the thick cylinder limit, I/_ approaches la[ and we find that

Pth_k = 1 (32)

Tlthick = 0 (33)

In this case. only one elgenvalue is non-zero, and the average covariance matrix is

identical to that of a sphere (Pr a _edral corner refiect0r), The entropy is O, indicating

no target randomness, even though we have calculated the average covariance matrix
for randorn/y oriented thick cylinders! The explanation for this result lies in the fact

that when the cylinders are thick, the single cylinder scattering matrix becomes the

identity matrix, which is insensitive to rotations. Therefore, even after rotations, we still

added up only identity matrices, and no apparent target randomness is introduced.

For cylinders that are neither thick compared to the wavelength, nor thin compared to

the wavelength. 0 < Ib / a[ < I. Figure 1 shows the behavior of the normalized

the eigenvalues as predicted by (22)-(24). We notice, as mentioned before, that the
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second and third eJgenvalues are always the same magnitude, but they get smaller
relative to the first eigenvalue as the ratio of the two scattering matrix elements
approaches I.

_ m/ i/li_ u_aunm i,,,------ II --

1.6- "_

1.4. 

-m- E1 43- E2,E31-

0.8-
_:_

0.6

0.4

o.j
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio b/a

Figure 1, Ratio of eigenvalues as a[unction of the ratio of b to a. The ratio of
b to a depends on the cylinder dielectric constant and cylinder s_e compared
to the uxzvelength.

4.2 Measured scattering from clear-cut area.

Using the NASA/JPL AIRSAR system [7], the complete Stokes matrix [8] can be

measured for each plxel in a scene. The actual measurements in general compare well
with the general form of the covariance matrix assumed in (8), except that the four

terms assumed to be zero are not exactly equal to zero. However, these four terms are

typically much smaller than the other terms, so that to a good approximation, the
assumption in (8) is valid. Here, we shall set those four terms to zero. Table 1 below

shows the measured parameters at P-band, L-band and C-band for a clear-cut area in
the Shasta Trinity National Forest in Califomia.

The clear-cut area is covered with short shrub-like vegetation. We note that at all three
frequencies the scattering is dominated by an odd number of reflections. At P-band the
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even number of reflections and the cross-polarized returns are almost the same

strength, and about half that of the odd numbers of reflections. This is very similar to
the thin randomly oriented cylinder case discussed earlier. As the frequency increases.
the even number of reflections and the cross-polarized returns become more different,

and also become a smaller fraction of the total scattering. This is consistent with the

randomly oriented cylinder case where the radius of the cylinder increases. The same
conclusion is reached when considering the entropy. The highest value (most

randomness) is observed at P-band, and the randomness decreases with increasing

frequency. As pointed out before, as the cylinder radius increases, the entropy
decreases. Therefore, from the decomposition results we conclude that the vegetation in

the clear-cut is randomly oriented, and that most of the scattering comes from

vegetation that has branches that are thin compared to the three radar wavelengths.

Table 1. Measured values for a clear-cut in the Shasta Trinity National

Forest. Also shown are the results of the Cloude decomposition.

Parameter
TL

P

Z2

Z3

Entropy

P-band

0.5261

0.5642

0.0928+10.0582

L-band

0.5308

0.7580

0.2324+i0.1057

C-band

0.4083

0.7159

0.3558+I0.0440

1.0260

0.5382

0.5261

0.95

1.1615

0.5964

0.5308

0.94

1.2437

0.4722

0.4083

0.88

4.3 Measured scattering from a forested area.

Table 2 below shows the measured p_etcrs at P-band, L-band and C-band for a

forested area in the Shasta Trinity National Forest in California, We note that at all

three frequencies the scattering from this coniferous forest is dominated by an odd
number of reflections. At P-band the even number of reflections contribution is

stronger relatlve to the cross-polarized returns when compared to the case of scattering

by randomly oriented cylinders. This is likely a result of the P-band signals penetrating

through the canopy and then suffering a double reflection when scattering from the
ground _d then from the tree _nks before retu _ :to the _d_,_ we notice that the
imbalance of the even numbers of reflections and the cross-polarized returns decrease

as the frequency increases, and also become a smaller fraction of the total scattering. A

possible interpretation of this is that as the frequency increases, the penetration
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through the canopydecreasesand the scatteringfrom the randomlyorientedbranches
becomesmoreimportant. Thehighestvalue ofthe entropy(mostrandomness)is

Table 2. Measured values for a forested area in the Shasta Trinity National

Forest. Also shown are the results of the Cloude decomposition.

Parameter

7?

P

Entropy

P-band

0.3301

0.6529

0.2803+i0.0167

L-band

0.3485

0.7122

0.3950+i0.0582

C-band

0.2416

0.4685

0.3669+i0.0016

1.1566

0.4963

0.3301

0.87

1.2805

0.4316

0.3485

0.84

1.1873

0.2812

0.2416

0.75

observed at P-band, and the randomness decreases with increasing frequency. From
the decomposition results we conclude that the penetration through this coniferous

canopy cannot be neglected. Most of the scattering can still be contributed to the

randomly oriented branches, however. The relative strengths of the different

mechanisms, as well as the lower values of the entropy, suggest that the branches are
thicker than those of the vegetation in the clear-cut area.

5. DISCUSSION

In this paper we applied Cloude's decomposition to imaging radar p01arimetry. The
decompositions illustrated here have been implemented on a pixel-by-pixel basis to

analyze polarimetric radar images. Space does not permit the inclusion of more
examples, however.

We have shown how the decomposition results can guide the interpretation of scattering

from vegetated areas. For clear-cut areas, we concluded that the vegetation is probably
thin compared to even the C-band radar wavelength of 6 cm. For forested areas, we

noticed an increased amount of even number of reflection scattering at P-band and L-

band, probably the result of penetration through the coniferous canopy resulting in
tl-tmk-ground double reflection scattering. The scatterin_ for the forested area is still

dominated by scattering from randomly oriented cylinders. It is found that these

cylinders are thicker than in the case of clear-cut areas, leading us to conclude that
scattering from the branches probably dominates in this case.
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Thequantitativeanalysisof scatteringrequiresdetailedanalysisofthe decompositions
that will result from modelpredictions. Futureworkwill concentrateonanalyzingthe
decompositionsof modelpredictedcovariancematrices. Theresults can then beused
to analyzepolarlrnetricradar images.
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